A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice.

نویسندگان

  • S Chiavegatto
  • J Sun
  • R J Nelson
  • R L Schnaar
چکیده

Although gangliosides are abundant molecular determinants on all vertebrate nerve cells (comprising approximately 1.5% of brain dry weight) their functions have remained obscure. We report that mice engineered to lack a key enzyme in complex ganglioside biosynthesis (GM2/GD2 synthase), and which express only the simple ganglioside molecular species GM3 and GD3, develop significant and progressive behavioral neuropathies, including deficits in reflexes, strength, coordination, and balance. Quantitative indices of motor abilities, applied at 8 and 12 months of age, also revealed progressive gait disorders in complex ganglioside knockout mice compared to controls, including reduced stride length, stride width, and increased hindpaw print length as well as a marked reduction in rearing. Compared to controls, null mutant mice tended to walk in small labored movements. Twelve-month-old complex ganglioside knockout mice also displayed significant incidence of tremor and catalepsy. These comprehensive neurobehavioral studies establish an essential role for complex gangliosides in the maintenance of normal neural physiology in mice, consistent with a role in maintaining axons and myelin (Sheikh, K. A. , J. Sun, Y. Liu, H. Kawai, T. O. Crawford, R. L. Proia, J. W. Griffin, and R. L. Schnaar. 1999. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc. Natl. Acad. Sci. USA 96: 7532-7537), and may provide insights into the mechanisms underlying certain neural degenerative diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuromuscular synaptic transmission in aged ganglioside-deficient mice.

Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenanc...

متن کامل

Roles of complex gangliosides in the development of experimental autoimmune encephalomyelitis.

We induced experimental autoimmune encephalomyelitis (EAE) in GM2/GD2 synthase knockout mice (GM2/GD2-/-), which cannot synthesize complex gangliosides, such as GM1, GD1a, GD1b, GT1b, and GQ1b, to investigate the roles of complex gangliosides in the pathogenesis of this disease. We used myelin-oligodendrocyte glycoprotein (MOG) as an immunogen. In active immunization EAE, the severity of clinic...

متن کامل

Neuromuscular synaptic function in mice lacking major subsets of gangliosides.

Gangliosides are a family of sialylated glycosphingolipids enriched in the outer leaflet of neuronal membranes, in particular at synapses. Therefore, they have been hypothesized to play a functional role in synaptic transmission. We have measured in detail the electrophysiological parameters of synaptic transmission at the neuromuscular junction (NMJ) ex vivo of a GD3-synthase knockout mouse, e...

متن کامل

Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects.

Gangliosides are a family of sialic acid-containing glycosphingolipids highly enriched in the mammalian nervous system. Although they are the major sialoglycoconjugates in the brain, their neurobiological functions remain poorly defined. By disrupting the gene for a key enzyme in complex ganglioside biosynthesis (GM2/GD2 synthase; EC 2.4.1.92) we generated mice that express only simple ganglios...

متن کامل

Disruption of GM2/GD2 synthase gene resulted in overt expression of 9-O-acetyl GD3 irrespective of Tis211

GM2/GD2 synthase gene knockout mice lack all complex gangliosides, which are abundantly expressed in the nervous systems of vertebrates. In turn, they have increased precursor structures GM3 and GD3, probably replacing the roles of the depleted complex gangliosides. In this study, we found that 9-O-acetyl GD3 is also highly expressed as one of the major glycosphingolipids accumulating in the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental neurology

دوره 166 2  شماره 

صفحات  -

تاریخ انتشار 2000